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Homology:
More than just genes!

DNA / protein “residues”

HOMOLOGOUS genes (nucleotides and amino acids)

share a common ancestor can also be homologous
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Each column is a homologous position
within the proteins

Modern genes (all homologous)
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For many applications of sequence analysis, we would
like to know which residues are homologous between

sequences
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Functional domain prediction
Distance/tree estimation

Structure prediction



In a world where substitutions were the only
type of mutation, the homology of residues
would be obvious
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Each column contains a set of residues
that are homologous

This is a sequence alignment (albeit
a trivial one!)



But Life is Not so Easy...

Insertions and deletions (and more complex
changes) can complicate the process
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The process
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To bring homologous residues
together, we need to perform a

SEQUENCE ALIGNMENT by
introducing gap characters

But how do we get to an
alignment, and how do we
decide which is best?



Keys to sequence alignment

1. We need a SCORING SYSTEM for an alignment of
two or more sequences
— Is the alignment any good?

— Is the similarity between the two sequences better than
random?

2. We also need an ALGORITHM to find the best
alignment, or a set of highly probable alignments
— What is the complexity of finding the optimal solution?

— To what extent can we trade away optimality for
efficiency?



Elements of a scoring system

* Residue frequencies f(x)
and transition probabilities p(xi,xj)

* A scheme G for penalizing gaps

e A formula for computing the score, given F, P, and G



Part the first: substitution probabilities

1. Build a reference dataset with certain
desirable properties

2. Construct alignments (?!) of the sequences
within this dataset

3. Compute the probabilities of different
substitutions based on observed frequencies
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Margaret Dayhoff and PAM
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65 protein sequences

First DNA gene sequence was 1972
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“Responding to the sudden increase in the rate of
nucleic acid sequencing, Dr. Dayhoff established an
on-line computer database and a sophisticated
retrieval system, accessable by phone to outside
users, in September 1980. A home computer system
had been used to prove the feasibility of this
approach. This nucleic acid sequence database is
currently one of the largest in the world, containing
over 2 000 000 sequenced nucleotides with
references and annotations. Since September 1981,
the Protein Sequence Database has also been
available on-line as well as on magnetic tape.”

http://www.dayhoff.cc/MODBiograp]h4y.html



Other Dayhoff

* First phylogenetic tree calculated using a
computer

* Origins of life / Early planetary evolution

* Protein families and superfamilies
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Building a Substitution Matrix

* One way is to define amino acids based on
their chemical and/or structural properties,
and build a matrix based on their similarity

—m
Isoleucine

Leucine 1 l
Tryptophan l l

e e.g. Grantham matrix (1974). Doesn’t reflect
the evolutionary process — why not?
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Percent Accepted Mutation (PAM)

* An ‘accepted’ mutation changes one or more amino
acids and doesn’t lead to insta-death or selective costs

 PAMn matrix — n substitutions per 100 sites

PAM1: Sequences with 1 substitution / 100 sites
PAM?250: Sequences with 250 substitutions / 100 sites
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Building the PAM1 matrix

e Assume that amino acid substitution is a
Markovian process (?)

* Reference data set (1978): set of protein
alignments, 71 families in total

* Consider only blocks — ungapped alighnment
regions 2 85% identical (minimize double
substitutions!)



Map onto a PHYLOGENETIC TREE that shows the history of the sequences

1 AAAILGMVFQ G-A M-l
2 AAAILGMVFP
3 AAGILGIVFP p-Q EAW
4 AAGILGIVWP
1 2 3 4

Count this change only once!

Treat substitutions as REVERSIBLE (so our matrix will be symmetric)

M |

Also compute the vector of frequencies:
f(A) =10/40=0.25
f(F) =3/40=0.075
etc...



Matrix of Counts

A,,=s(a—>Db)+s(b—a)

A C D
9981 15 31

15 6744 12

31 12 8330

DIAGONALS (no change) dominate
in closely related sequences
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Matrix of Probabilities

Normalize by row, all row sums ==

B . Aa,b
ab ZC Aa’c

A C D Sum

0.97 0.0002 0.005 1.0

0.0002 0.995 0.0003 1.0

D 0.005 0.0003 0.982 1.0

What is the relative rate of change of A < C, or “change” between A < A



Matrix of Scaled Probabilities
(1 PAM)

The amount of evolution in B is arbitrary, based on whatever sequences we used to create
our dataset

Rescale the matrix based on frequencies so the expected number of substitutions per
site is equal to 0.01

Each off-diagonal element is multiplied by ¢, where

0.01

Yy f@B,,

Change diagonals so each row sums to 1.0, and the rest of the matrix sums to 1 PAM

24



Total amount of change = ???

A C D Sum
B C 0.0002 0.995 0.0003 1.0
0.005 0.0003 0.982 1.0

\ 4

Total amount of change = 0.01 substitutions per site

A C D

C C 0.00002 0.9985 0.00003
0.0005 0.00003 0.9911




A R N D C
A 9867 2 9 10 3
R 1 98913 1 0 1
N 4 1 9822 36 0
D 6 0 42 9859 0
¢ 1 1 0 0 9973

Upper left-hand corner of PAM1 probability matrix
(divide by 10,000 to get probabilities)
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For higher-order PAM matrices:

PAMn = (PAM1)”

For higher-order PAM matrices, values on the diagonal will
decrease, while off-diagonals will increase

(greater evolutionary distance)

Exponentiation (rather than changing the scaling constant) is
necessary to properly account for multiple substitutions



The last step

* We need to generate a matrix that captures
the probability of seeing residues i and j
together due to homology, relative to a
random expectation

D [ Cib ) o
’ Better than random: D >0
a’b — S ) log Random: D=0

b
\f(a)f(b)) Worse than random: D <0




Ni-lol<lozlaw|glxiex=Ela=>w>=
= -
1
> N~ IO
~
s a ||~
(V]
(g0}
= o~
1
- a/_;...n.- = ol Bl e N
__ll
— /.\.,\....n.uw < |Nn|en o |55 |°
X ©
p=— = & W =Nl |||
(g0}
&
o a O[S [RIN|NR|NR
o
o S W 5[ RN R
it
= o ol |NIRITRITRIS e
(e} W o |||V |
11 w NN
O ol INISIRIRITIRIRI IR
= Ol oo~ |N|RI[R|RIRINT
() |||V NN NRITITII2|2 Y
o N~ N NI IS S IN N T |NRIRIN TR T
o e L N P N P = = = e il s i Bl s s
Q SIS IR I |RIRIRITIRICRICRICRIS IS IS IS SIS
Ni-ol<|lozlaoaw|gxeix=Elal=>nl>=

ds/xrds13-1/gfx/13-1-11/Image7-BLOSUME62.jpg

http://www.acm.org/crossroa



Thoughts on PAM

Limitations?
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Millions of nucleotides
(Related to # of proteins)

JTT matrix

(Jones, Taylor, Thornton)

PAM matrix here
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http://www.innovations-report.com/bilder_neu/48071_data.jpg
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PAMn = (PAM1)"

Extrapolation!!!



What if the tree is wrong?



The BLOSUM matrix —
clusters instead of trees

Subdivide homologous sequences into CLUSTERS with at least L% identity
Count substitutions between clusters only

1 AAAILGMVFP
2 AAAILGMVFQ ) )

3 AAGILGIVWP
4 AAGILGIVFP
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f(P)=

P -
Q 0
|
AP,P + b P E Ap,b C A
P Q
Zc,d Ac,d Zc d e ,d
=3/4 =1/2
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Why BLOSUM?

* No reliance on an inferred tree

* No extrapolation; differences are observed
directly from alighments with at least L%
divergence

* Choose matrix that matches alignment
similarity



BLOSUM x Matrices

X = the % identity within blocks

BLOSUM 62 is based on more similar sequences
than BLOSUM 50

(opposite of PAM!)



There’s more than ¢ 10 ways to do it

| RAXML! Inference  JC, M Blosum62, CpRev, | Partitioned -+ +G
- |
K80, Dayhoff. DUMMY. | models can
/ HKY. FLU. HIVb, HIVw, : be

Tree inference software GTR
(coming in a future module!)

JTT. JonesDCMUT, | specified
LG, Mtart, Mtmam, |
Mtrev, Mtzoa. PMB. |
RtRev, STMREV, VT, :
|

| WAG +F

Models: /

- Different originating datasets (HIVb)
- Larger datasets (JTT)
- Fancy likelihoods (WAG, LG)

Arenas (2015) Front Genet 38



Great. We can score alignments.

But what about gaps??

QVKOQIYKTPPIKYFGGENEFSQILPDPSKPSKRSPIEDLLEF-————————
QVKQIYKTPPIK-—7————————— D> FGGENEFSQIL



GAP Penalties!

* Two types:

LINEAR:

AFFINE:

Gap opening penalty

y(g)=-gd

y(g)=

Gap length

@

Gap extension penalty
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Computing an Alignment Score

MEAGTEPVLG

MRAGTEL--G

S(X)= DM,M + DK,R + DA,A + DG,G + DT,T + DE,E + DP,L 1 y(g — 2}"‘ DG,G

Using PAM250, a gap opening penalty of 5 and a gap extension penalty of 2,

S(X)=6+34+24+54+3+4+(3)H(-T7)+5

=18
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MEAGTEPVLG

S(X) =18
MRAGTEL--G

Contrast with alignment Y:

y MKAGTEPVLG
- | MRA--GTELG

SY)=6+3+2+(-7)+0+0+(-2)+6+5

S(Y) =13
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um, DNA?

* Something like this usually works pretty well:
A G C T
A 1 -1 1 1
G -1 1 1 -1
C -1 -1 1 -1
T -1 -1 1 1
* Or possibly this:
A G C T
A 1 0.5 -1 1
G 0.5 1 1 1
C 1 1 1 0.5
T 1 1 0.5 1




For protein-coding sequences, it is most
common to aligh the amino acid sequences,
then match the corresponding DNA codons

against this sequence

¢ Why?



The goal of sequence alignment is (usually) to
find the best alignment score — maximize the

probability of observing aligned residues,
relative to the null model

But optimal methods are slow — as you will see!
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Global vs. Local alighment




Pairwise vs. Multiple alighnment
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Alignment Representations

PO
01
0z
03
04
05
06
07
08
09
10

PWMs/PSSMs
A C G
0.435 0.317 -0.128
1.320 -3.121 0.349
1.065 -3.121 0.301
=3.121 -3.121 -=3.121
-3.121 -3.121 1.870
1.870 -3.121 -3.121
-3.119 L8527 =3:119
=312 =391Z21 =3:121
-3.121 1.870 -3.121
0.881 -0.061 -2.987

T
-1.037
-3.121
-0.834

1.870
-3.121
=3 121
-0.171

1.870
-3.121

0.104

Bits

http://www.cbs.dtu.dk/courses/27619/project09.php

0-
N

Sequence Logos

(-2

Hidden Markov Models

http://www.pdc.kth.se/~hakanv/modhmm/modhmm_web_pic.jpg

http://www.nature.com/msb/journal/v3/n1/images/msb4100159-3.jpg
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Overview

1. We need a SCORING SYSTEM for an alignment of
two or more sequences
— frequencies + substitutions + gaps = score
- PAM/BLOSUM matrices capture the first two
- Gap penalties can be linear or affine

2. But we still need algorithms that make use of our
scoring system



