Sequence Alignment S-qua-ce Am--xnedt

Homology:

 More than just genes!HOMOLOGOUS genes
share a common ancestor

Modern genes (all homologous)

DNA / protein "residues"
(nucleotides and amino acids) can also be homologous
 KSN FIKIIQLLDDYPKCFIVG ADH VGSKQMQQIRMS KSN FFIKIIQLLDDYPKCFIVGADH VGSKQMQTIRLS KSN FFIKIIQLLNDYPKCFIVGADHGSKQMQTIRLS KAQ FFIKVVELFDEFPKCFIVG ADHVGSKQMQNIRTS KKL IE KATKLFTTYDKMIVAE ADH VGSSQLQKIRKS KNV \mid IEKATKLFTTYDKMIVAE ADEVGSSOLQKIRKS
 KVD V VFELTEKLKTHKTIIIAN EE FPADKLHEIRKK KIE YVEELEQKLREYHTIIIAN EE FPADKLHDIRKK KLE\& VHELTELIKNSNTILIGN EG FPADKLHEIRKR
 KVK VSEATELLQKYPYVFLFD HC LSSRILHE YRYE KKD 1 IENIKELIQSHKVFGMVG EG ILATKMÖKIRRE KKD $\operatorname{IENIKELIQSHKVFGMVREGILATKIQKIRRD}$ KVR VEEIKRMISSKPVVAIVS RH VPAGQMQKIRRE
 KKKı vge Lhd likgyevvgian ai Iparglokmrqi KIE VNKLKELLKNGQIVAL VD kIE VNALKELLKSANVIAL ID MME VPAVQLQEIRDK KIE\& VKTLKGLIKSKPVVAIVD fimi VPAPQLQEIRDK KKKIVEELANLIKSYPVIALVD S

Each column is a homologous position within the proteins

For many applications of sequence analysis, we would like to know which residues are homologous between sequences

MRTEPLIG

Functional domain prediction
MRSEPLIG
Distance/tree estimation
Structure prediction

In a world where substitutions were the only type of mutation, the homology of residues would be obvious

Each column contains a set of residues that are homologous

This is a sequence alignment (albeit a trivial one!)

But Life is Not so Easy...

Insertions and deletions (and more complex changes) can complicate the process

The process

$M R--T E P L I G$

$$
M R-\text {-SEPIG }
$$

MRAGTEPV:LG

$$
M R E--\quad-G
$$

MiRAGTEPV:LG

To bring homologous residues together, we need to perform a SEQUENCE ALIGNMENT by introducing gap characters

But how do we get to an alignment, and how do we decide which is best?

Keys to sequence alignment

1. We need a SCORING SYSTEM for an alignment of two or more sequences

- Is the alignment any good?
- Is the similarity between the two sequences better than random?

2. We also need an ALGORITHM to find the best alignment, or a set of highly probable alignments

- What is the complexity of finding the optimal solution?
- To what extent can we trade away optimality for efficiency?

Elements of a scoring system

- Residue frequencies $f\left(x_{\mathrm{i}}\right)$ and transition probabilities $p\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$
- A scheme G for penalizing gaps
- A formula for computing the score, given F, P, and G

Part the first: substitution probabilities

1. Build a reference dataset with certain desirable properties
2. Construct alignments (?!) of the sequences within this dataset
3. Compute the probabilities of different substitutions based on observed frequencies

Margaret Dayhoff and PAM

65 protein sequences

First DNA gene sequence was 1972
"Responding to the sudden increase in the rate of nucleic acid sequencing, Dr. Dayhoff established an on-line computer database and a sophisticated retrieval system, accessable by phone to outside users, in September 1980. A home computer system had been used to prove the feasibility of this approach. This nucleic acid sequence database is currently one of the largest in the world, containing over 2000000 sequenced nucleotides with references and annotations. Since September 1981, the Protein Sequence Database has also been available on-line as well as on magnetic tape."

Other Dayhoff

- First phylogenetic tree calculated using a computer
- Origins of life / Early planetary evolution
- Protein families and superfamilies

ACDEFGHKLMNPQRSTVWY

Building a Substitution Matrix

Building a Substitution Matrix

- One way is to define amino acids based on their chemical and/or structural properties, and build a matrix based on their similarity

	Isoleucine	Leucine	Tryptophan
Isoleucine		\uparrow	\downarrow
Leucine	\uparrow		\downarrow
Tryptophan	\downarrow	\downarrow	

- e.g. Grantham matrix (1974). Doesn't reflect the evolutionary process - why not?

Percent Accepted Mutation (PAM)

- An 'accepted' mutation changes one or more amino acids and doesn't lead to insta-death or selective costs
- PAMn matrix - n substitutions per 100 sites

PAM1: Sequences with 1 substitution / 100 sites
PAM250: Sequences with 250 substitutions / 100 sites
Huh?

Building the PAM1 matrix

- Assume that amino acid substitution is a Markovian process (?)
- Reference data set (1978): set of protein alignments, 71 families in total
- Consider only blocks - ungapped alignment regions $\geq 85 \%$ identical (minimize double substitutions!)

Map onto a PHYLOGENETIC TREE that shows the history of the sequences

1 AAAILGMVFQ
 2 AAAILGMVFP 3 AAGILGIVFP 4 AAGILGIVWP

Count this change only once!

Treat substitutions as REVERSIBLE (so our matrix will be symmetric)

$$
\mathrm{M} \leftrightarrow \mathrm{l}
$$

Also compute the vector of frequencies:

$$
\begin{aligned}
& f(\mathrm{~A})=10 / 40=0.25 \\
& f(\mathrm{~F})=3 / 40=0.075 \\
& \text { etc. } .
\end{aligned}
$$

Matrix of Counts

$$
A_{a, b}=s(a \rightarrow b)+s(b \rightarrow a)
$$

	A	C	D	\ldots
A	9981	15	31	\ldots
C	15	6744	12	\ldots
D	31	12	8330	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots

DIAGONALS (no change) dominate in closely related sequences

Matrix of Probabilities

Normalize by row, all row sums == 1

$$
B_{a, b}=\frac{A_{a, b}}{\sum_{c} A_{a, c}}
$$

	A	C	D	\ldots	Sum
A	0.97	0.0002	0.005	\ldots	1.0
C	0.0002	0.995	0.0003	\ldots	1.0
D	0.005	0.0003	0.982	\ldots	1.0
\ldots	\ldots	\ldots	\ldots	\ldots	

What is the relative rate of change of $A \leftrightarrow C$, or "change" between $A \leftrightarrow A$

Matrix of Scaled Probabilities (1 PAM)

The amount of evolution in B is arbitrary, based on whatever sequences we used to create our dataset

Rescale the matrix based on frequencies so the expected number of substitutions per site is equal to 0.01

Each off-diagonal element is multiplied by c, where

$$
c=\frac{0.01}{\sum_{a} \sum_{b \neq a} f(a) B_{a, b}}
$$

Change diagonals so each row sums to 1.0 , and the rest of the matrix sums to 1 PAM

Total amount of change = ???

	A	C	D	\ldots	Sum
A	0.97	0.0002	0.005	\ldots	1.0
C	0.0002	0.995	0.0003	\ldots	1.0
D	0.005	0.0003	0.982	\ldots	1.0
\ldots	\ldots	\ldots	\ldots	\ldots	

Total amount of change $=0.01$ substitutions per site

	A	C	D	\ldots
A	0.9994	0.00002	0.0005	\ldots
C	0.00002	0.9985	0.00003	\ldots
D	0.0005	0.00003	0.9911	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots

	A	R	N	D	C
A	9867	2	9	10	3
R	1	9913	1	0	1
N	4	1	9822	36	0
D	6	0	42	9859	0
C	1	1	0	0	9973

Upper left-hand corner of PAM1 probability matrix (divide by 10,000 to get probabilities)

For higher-order PAM matrices:

PAMn $=(P A M 1)^{n}$

For higher-order PAM matrices, values on the diagonal will decrease, while off-diagonals will increase
(greater evolutionary distance)
Exponentiation (rather than changing the scaling constant) is necessary to properly account for multiple substitutions

The last step

- We need to generate a matrix that captures the probability of seeing residues i and j together due to homology, relative to a random expectation

$$
{ }_{a, b}=S \cdot \log \left(\frac{C_{a, b}}{f(a) f(b)}\right)
$$

Better than random: $\mathrm{D}>0$ Random: $\mathrm{D}=0$
Worse than random: $\mathrm{D}<0$

	C	S	T	P	A	G	N	D	E	Q	H	R	K	M	1	L	V	F	Y	W	
C	9																				C
S	- 1	4																			S
T	- 1	1	5										m	trix			bas				T
P	- 3	-1	-1	7								,	m	Ha	f-bi	,	g				P
A	0	1	0	- 1	4																A
G	- 3	0	-2	-2	0	6															G
N	- 3	1	0	-2	-2	0	6														N
D	-3	0	-1	-1	-2	- 1	1	6													D
E	-4	0	-1	- 1	- 1	-2	0	2	5												E
Q	- 3	0	-1	-1	-1	-2	0	0	2	5											Q
H	- 3	-1	-2	-2	-2	-2	1	-1	0	0	8										H
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5									R
K	-3	0	-1	-1	-1	-2	0	-1	1	1	-1	2	5								K
M	-1	-1	-1	-2	-1	- 3	-2	- 3	-2	0	-2	-1	-1	5							M
1	-1	-2	-1	-3	-1	-4	-3	- 3	-3	- 3	-3	-3	-3	1	4						1
L	-1	-2	-1	- 3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4					L
V	-1	-2	0	-2	0	-3	-3	-3	-2	-2	-3	-3	-2	1	3	1	4				V
F	-2	-2	-2	-4	-2	-3	-3	- 3	-3	- 3	-1	-3	- 3	0	0	-	-1	6			F
Y	-2	-2	-2	- 3	-2	- 3	-2	- 3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7		Y
W	-2	-3	-2	-4	-3	-2	-4	-4	-3	-2	-2	-3	- 3	-1	-3	-2	-3	1	2	11	W

Thoughts on PAM

Limitations?

PAM $n=(P A M 1)^{n}$

Extrapolation!!!

What if the tree is wrong?

The BLOSUM matrix clusters instead of trees

Subdivide homologous sequences into CLUSTERS with at least L\% identity Count substitutions between clusters only
$\left.\left.\begin{array}{ll}1 & \text { AAAILGMVFP } \\ 2 & \text { AAAILGMVFQ } \\ 3 & \text { AAGILGIVWP } \\ 4 & \text { AAGILGIVFP }\end{array}\right)\right)$

	P	Q
P	2	-
Q	2	0

$$
\begin{array}{c|c|c|}
\hline & \mathrm{P} & \mathrm{Q} \\
\hline \mathrm{P} & 2 & - \\
\hline \mathrm{Q} & 2 & 0 \\
\hline
\end{array}
$$

Why BLOSUM?

- No reliance on an inferred tree
- No extrapolation; differences are observed directly from alignments with at least L\% divergence
- Choose matrix that matches alignment similarity

BLOSUM x Matrices

$$
x=\text { the } \% \text { identity within blocks }
$$

BLOSUM 62 is based on more similar sequences than BLOSUM 50
(opposite of PAM!)

There's more than $\ddagger 10$ ways to do it

	Inference	JC,
1		K80, HKY,
Tree inference sof (coming in a future	are dule!)	GTR

Models:

- Different originating datasets (HIVb)
- Larger datasets (JTT)
- Fancy likelihoods (WAG, LG)

Great. We can score alignments.

But what about gaps??

QVKQIYKTPPIKYFGGFNFSQILPDPSKPSKRSPIEDLLF----------QVKQIYKTPPIK------------D--------------EFGGFNFSQIL

GAP Penalties!

- Two types:

LINEAR: $\quad \gamma(g)=-g d$

Gap length

Computing an Alignment Score

MKAGTEPVLG

$$
X=
$$

```
MRAGTEL--G
```

$S(X)=D_{M, M}+D_{K, R}+D_{A, A}+D_{G, G}+D_{T, T}+D_{E, E}+D_{P, L}+\gamma(g=2)+D_{G, G}$

Using PAM250, a gap opening penalty of 5 and a gap extension penalty of 2,

$$
\begin{gathered}
S(X)=6+3+2+5+3+4+(-3)+(-7)+5 \\
=18
\end{gathered}
$$

$X=\begin{aligned} & \text { MRAGTEPVLG } \\ & \text { MRAGTEL--G }\end{aligned} \quad \mathrm{S}(\mathrm{X})=18$

Contrast with alignment Y :

$$
Y=\begin{aligned}
& \text { MRAGTEPVLG } \\
& \text { MRA--GTELG }
\end{aligned}
$$

$$
S(Y)=6+3+2+(-7)+0+0+(-2)+6+5
$$

$$
S(Y)=13
$$

um, DNA?

- Something like this usually works pretty well:

	A	G	C	T
A	1	-1	-1	-1
G	-1	1	-1	-1
C	-1	-1	1	-1
T	-1	-1	-1	1

- Or possibly this:

	A	G	C	T
A	1	0.5	-1	-1
G	0.5	1	-1	-1
C	-1	-1	1	0.5
T	-1	-1	0.5	1

For protein-coding sequences, it is most common to align the amino acid sequences, then match the corresponding DNA codons against this sequence
¿Why?

The goal of sequence alignment is (usually) to find the best alignment score - maximize the probability of observing aligned residues, relative to the null model

But optimal methods are slow - as you will see!

Global vs. Local alignment

Pairwise vs. Multiple alignment

Alignment Representations

PWMs/PSSMs				
P0		C	G	T
01	0.435	0.317	-0.128	-1.037
02	1.320	-3.121	0.349	-3.121
03	1.065	-3.121	0.301	-0.834
04	-3.121	-3.121	-3.121	1.870
05	-3.121	-3.121	1.870	-3.121
06	1.870	-3.121	-3.121	-3.121
07	-3.119	1.527	-3.119	-0.171
08	-3.121	-3.121	-3.121	1.870
09	-3.121	1.870	-3.121	-3.121
10	0.881	-0.061	-2.987	0.104

http://www.cbs.dtu.dk/courses/27619/project09.php

http://www.pdc.kth.se/~hakanv/modhmm/modhmm_web_pic.jpg

Overview

1. We need a SCORING SYSTEM for an alignment of two or more sequences

- frequencies + substitutions + gaps = score
- PAM/BLOSUM matrices capture the first two
- Gap penalties can be linear or affine

2. But we still need algorithms that make use of our scoring system
